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The astronaut shown in this photograph is walking out onto

the cargo bay area of the space shuttle to attempt repair of

a satellite. Although the astronaut’s initial attempt to cap-

ture the satellite was unsuccessful, this task was later

accomplished by a robotic arm. The astronauts were then

able to repair the satellite.

CHAPTER 7

Circular Motion
and Gravitation

WHAT TO EXPECT

In this chapter, you will learn how to describe

circular motion and the forces associated with

it, including the force due to gravity.

WHY IT MATTERS

Circular motion is present all around you—from

a rotating Ferris wheel in an amusement park to

a space shuttle orbiting Earth to Earth’s orbit

around the sun.
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CENTRIPETAL ACCELERATION

Consider a spinning Ferris wheel, as shown in Figure 1. The cars on the rotat-

ing Ferris wheel are said to be in circular motion. Any object that revolves

about a single axis undergoes circular motion. The line about which the rota-

tion occurs is called the axis of rotation. In this case, it is a line perpendicular

to the side of the Ferris wheel and passing through the wheel’s center.

Tangential speed depends on distance

Tangential speed (vt) can be used to describe the speed of an object in circular

motion. The tangential speed of a car on the Ferris wheel is the car’s speed

along an imaginary line drawn tangent to the car’s circular path. This defini-

tion can be applied to any object moving in circular motion. When the tangen-

tial speed is constant, the motion is described as uniform circular motion.

The tangential speed depends on the distance from the object to the center

of the circular path. For example, consider a pair of horses side-by-side on a

carousel. Each completes one full circle in the same time period, but the

horse on the outside covers more distance than the inside horse does,

so the outside horse has a greater tangential speed.

Centripetal acceleration is due to a change in

direction

Suppose a car on a Ferris wheel is moving at a

constant speed around the wheel. Even though

the tangential speed is constant, the car still

has an acceleration. To see why, consider the

equation that defines acceleration:

a = 
v

tf

f −

−

v

ti

i


Acceleration depends on a change in

the velocity. Because velocity is a vec-

tor, acceleration can be produced by a

change in the magnitude of the veloci-

ty, a change in the direction of the

velocity, or both.

Circular MotionSECTION 1
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SECTION OBJECTIVES

� Solve problems involving
centripetal acceleration.

� Solve problems involving
centripetal force.

� Explain how the apparent
existence of an outward force
in circular motion can be
explained as inertia resisting
the centripetal force.

Figure 1

Any point on a Ferris wheel spinning about 
a fixed axis undergoes circular motion.

ADVANCED TOPICS

See “Tangential Speed and
Acceleration” in Appendix J:
Advanced Topics to learn more
about tangential speed, and to be
introduced to the concept of tan-
gential acceleration.



The acceleration of a Ferris wheel car moving in a circular path and at

constant speed is due to a change in direction. An acceleration of this nature

is called a The magnitude of a centripetal accelera-

tion is given by the following equation:

What is the direction of centripetal acceleration? To answer this question,

consider Figure 2(a). At time ti, an object is at point A and has tangential

velocity vi. At time tf , the object is at point B and has tangential velocity vf.

Assume that vi and vf differ in direction but have the same magnitudes.

The change in velocity (∆v = vf − vi) can be determined graphically, as

shown by the vector triangle in Figure 2(b). Note that when ∆t is very small,

vf will be almost parallel to vi. The vector ∆v will be approximately perpendic-

ular to vf and vi and will be pointing toward the center of the circle. Because

the acceleration is in the direction of ∆v, the acceleration will also be directed

toward the center of the circle. Centripetal acceleration is always directed

toward the center of a circle. In fact, the word centripetal means “center seek-

ing.” This is the reason that the acceleration of an object in uniform circular

motion is called centripetal acceleration.

CENTRIPETAL ACCELERATION

ac = 
v

r

t
2



centripetal acceleration =

centripetal acceleration.

235Circular Motion and Gravitation

SAMPLE PROBLEM A

Centripetal Acceleration

P R O B L E M

A test car moves at a constant speed around a circular track. If the car is
48.2 m from the track’s center and has a centripetal acceleration of
8.05 m/s2, what is the car’s tangential speed?

S O L U T I O N

Given: r = 48.2 m ac = 8.05 m/s2

Unknown: vt = ?

Use the centripetal acceleration equation, and rearrange to solve for vt.

ac = 
v

r

t
2



vt =

√

ac�r� =

√

(8�.0�5�m�/s�2)�(4�8.�2�m�)�

vt = 19.7 m/s

centripetal acceleration

the acceleration directed toward

the center of a circular path

(a) BA vf
vi

Figure 2

(a) As the particle moves from A
to B, the direction of the particle’s
velocity vector changes. (b) For
short time intervals, ∆v is directed
toward the center of the circle.

(b)

vf

−vi

∆v

(tangential speed)2


radius of circular path



Tangential acceleration is due to a change in speed

You have seen that centripetal acceleration results from a change in direction.

In circular motion, an acceleration due to a change in speed is called tangen-

tial acceleration. To understand the difference between centripetal and tangen-

tial acceleration, consider a car traveling in a circular track. Because the car is

moving in a circle, the car has a centripetal component of acceleration. If the

car’s speed changes, the car also has a tangential component of acceleration.

CENTRIPETAL FORCE

Consider a ball of mass m that is tied to a string of length r and that is being

whirled in a horizontal circular path, as shown in Figure 3. Assume that the

ball moves with constant speed. Because the velocity vector, v, continuously

changes direction during the motion, the ball experiences a centripetal accel-

eration that is directed toward the center of motion. As seen earlier, the mag-

nitude of this acceleration is given by the following equation:

ac = 
v

r

t
2



The inertia of the ball tends to maintain the ball’s motion in a straight

path. However, the string exerts a force that overcomes this tendency. The

forces acting on the ball are gravitational force and the force exerted by the

string, as shown in Figure 4(a) on the next page. The force exerted by the
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PRACTICE A

Centripetal Acceleration

1. A rope attaches a tire to an overhanging tree limb. A girl swinging on the

tire has a centripetal acceleration of 3.0 m/s2. If the length of the rope is

2.1 m, what is the girl’s tangential speed?

2. As a young boy swings a yo-yo parallel to the ground and above his head,

the yo-yo has a centripetal acceleration of 250 m/s2. If the yo-yo’s string

is 0.50 m long, what is the yo-yo’s tangential speed?

3. A dog sits 1.5 m from the center of a merry-go-round. The merry-go-

round is set in motion, and the dog’s tangential speed is 1.5 m/s. What is

the dog’s centripetal acceleration?

4. A race car moving along a circular track has a centripetal acceleration of

15.4 m/s2. If the car has a tangential speed of 30.0 m/s, what is the dis-

tance between the car and the center of the track?

Figure 3

When a ball is whirled in a circle, it
is acted on by a force directed
toward the center of the ball’s cir-
cular path.



string has horizontal and vertical components. The vertical component is

equal and opposite to the gravitational force. Thus, the horizontal component

is the net force. This net force is directed toward the center of the circle, as

shown in Figure 4(b). The net force that is directed toward the center of an

object’s circular path is called centripetal force. Newton’s second law can be

applied to find the magnitude of this force.

Fc = mac

The equation for centripetal acceleration can be combined with Newton’s sec-

ond law to obtain the following equation for centripetal force:

Centripetal force is simply the name given to the net force on an object in

uniform circular motion. Any type of force or combination of forces can pro-

vide this net force. For example, friction between a race car’s tires and a circular

track is a centripetal force that keeps the car in a circular path. As another exam-

ple, gravitational force is a centripetal force that keeps the moon in its orbit.

CENTRIPETAL FORCE

Fc = 
m

r

vt
2



centripetal force = mass ×
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SAMPLE PROBLEM B

Centripetal Force

P R O B L E M

A pilot is flying a small plane at 56.6 m/s in a circular path with a radius of
188.5 m. The centripetal force needed to maintain the plane’s circular
motion is 1.89 × 104 N. What is the plane’s mass?

S O L U T I O N

Given: vt = 56.6 m/s r = 188.5 m Fc = 1.89 × 104 N

Unknown: m = ?

Use the equation for centripetal force. Rearrange to solve for m.

Fc = 
m

r

vt
2



m = 
F

v

c

t
2

r
 =

m = 1110 kg

(1.89 × 104 N)(188.5 m)


(56.6 m/s)2

m

v

r

Fc

Figure 4

The net force on a ball whirled in a
circle (a) is directed toward the
center of the circle (b).

Fstring

Fg
Fnet = Fc

(a)

(b)

(tangential speed)2


radius of circular path



Centripetal force is necessary for circular motion

Because centripetal force acts at right angles to an object’s circular motion, the

force changes the direction of the object’s velocity. If this force vanishes, the

object stops moving in a circular path. Instead, the object moves along a

straight path that is tangent to the circle.

For example, consider a ball that is attached to a string and that is whirled

in a vertical circle, as shown in Figure 5. If the string breaks when the ball is at

the position shown in Figure 5(a), the centripetal force will vanish. Thus, the

ball will move vertically upward, as if it has been thrown straight up in the air.

If the string breaks when the ball is at the top of its circular path, as shown in

Figure 5(b), the ball will fly off horizontally in a direction tangent to the path.

The ball will then move in the parabolic path of a projectile.

DESCRIBING A ROTATING SYSTEM

To better understand the motion of a rotating system, consider a car traveling

at high speed and approaching an exit ramp that curves to the left. As the

driver makes the sharp left turn, the passenger slides to the right and hits the

door. At that point, the force of the door keeps the passenger from being eject-

ed from the car. What causes the passenger to move toward the door? A popu-

lar explanation is that a force must push the passenger outward. This force is

sometimes called the centrifugal force, but that term often creates confusion,

so it is not used in this textbook.
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(a)

Figure 5

A ball that is on the end of a string
is whirled in a vertical circular path.
If the string breaks at the position
shown in (a), the ball will move
vertically upward in free fall. (b) If
the string breaks at the top of the
ball’s path, the ball will move along a
parabolic path.

(b)

PRACTICE B

Centripetal Force

1. A 2.10 m rope attaches a tire to an overhanging tree limb. A girl swinging

on the tire has a tangential speed of 2.50 m/s. If the magnitude of the

centripetal force is 88.0 N, what is the girl’s mass?

2. A bicyclist is riding at a tangential speed of 13.2 m/s around a circular

track. The magnitude of the centripetal force is 377 N, and the combined

mass of the bicycle and rider is 86.5 kg. What is the track’s radius?

3. A dog sits 1.50 m from the center of a merry-go-round and revolves at a

tangential speed of 1.80 m/s. If the dog’s mass is 18.5 kg, what is the

magnitude of the centripetal force on the dog?

4. A 905 kg car travels around a circular track with a circumference of 3.25

km. If the magnitude of the centripetal force is 2140 N, what is the car’s

tangential speed?



SECTION REVIEW

1. What are three examples of circular motion? 

2. A girl on a spinning amusement park ride is 12 m from the center of the

ride and has a centripetal acceleration of 17 m/s2. What is the girl’s tan-

gential speed?

3. Use an example to describe the difference between tangential and cen-

tripetal acceleration.

4. Identify the forces that contribute to the centripetal force on the object in

each of the following examples:

a. a bicyclist moving around a flat, circular track

b. a bicycle moving around a flat, circular track

c. a race car turning a corner on a steeply banked curve 

5. A 90.0 kg person rides a spinning amusement park ride that has a radius

of 11.5 m. If the person’s tangential speed is 13.2 m/s, what is the magni-

tude of the centripetal force acting on the person?

6. Explain what makes a passenger in a turning car slide toward the door of

the car.

7. Critical Thinking A roller coaster’s passengers are suspended

upside down as it moves at a constant speed through a vertical loop.

What is the direction of the force that causes the coaster and its passen-

gers to move in a circle? What provides this force?

1. Pizza

Pizza makers traditionally

form the crust by throwing

the dough up in the air and

spinning it. Why does this

make the pizza crust bigger?

2. Swings

The amusement-park ride

pictured below spins riders

around on swings attached

by cables from above. What

causes the swings to

move away from the

center of the ride

when the center

column begins to turn?

Inertia is often misinterpreted as a force

The phenomenon is correctly explained as follows: Before the car enters the

ramp, the passenger is moving in a straight path. As the car enters the ramp

and travels along a curved path, the passenger, because of inertia, tends to

move along the original straight path. This movement is in accordance with

Newton’s first law, which states that the natural tendency of a body is to con-

tinue moving in a straight line.

However, if a sufficiently large centripetal force acts on the passenger, the

person will move along the same curved path that the car does. The origin of

the centripetal force is the force of friction between the passenger and the car

seat. If this frictional force is not sufficient, the passenger slides across the seat

as the car turns underneath. Eventually, the passenger encounters the door,

which provides a large enough force to enable the passenger to follow the

same curved path as the car does. The passenger does not slide toward the

door because of some mysterious outward force. Instead, the frictional force

exerted on the passenger by the seat is not great enough to keep the passenger

moving in the same circle as the car.
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Newton’s Law of
Universal Gravitation

SECTION 2

GRAVITATIONAL FORCE

Earth and many of the other planets in our solar system travel in nearly circu-

lar orbits around the sun. Thus, a centripetal force must keep them in orbit.

One of Isaac Newton’s great achievements was the realization that the cen-

tripetal force that holds the planets in orbit is the very same force that pulls an

apple toward the ground—

Orbiting objects are in free fall

To see how this idea is true, we can use a thought experiment that Newton

developed. Consider a cannon sitting on a high mountaintop, as shown in

Figure 6. The path of each cannonball is a parabola, and the horizontal dis-

tance that each cannonball covers increases as the cannonball’s initial speed

increases. Newton realized that if an object were projected at just the right

speed, the object would fall down toward Earth in just the same way that

Earth curved out from under it. In other words, it would orbit Earth. In this

case, the gravitational force between the cannonball and Earth is a centripetal

force that keeps the cannonball in orbit. Satellites stay in orbit for this same

reason. Thus, the force that pulls an apple toward Earth is the same force that

keeps the moon and other satellites in orbit around Earth. Similarly, a gravita-

tional attraction between Earth and our sun keeps Earth in its orbit around

the sun.

gravitational force.
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SECTION OBJECTIVES

■ Explain how Newton’s law 
of universal gravitation
accounts for various phe-
nomena, including satellite
and planetary orbits, falling
objects, and the tides.

■ Apply Newton’s law of uni-
versal gravitation to solve
problems.

gravitational force

the mutual force of attraction

between particles of matter

Figure 6

Each successive cannonball has a
greater initial speed, so the horizon-
tal distance that the ball travels
increases. If the initial speed is great
enough, the curvature of Earth will
cause the cannonball to continue
falling without ever landing.



Gravitational force depends on the masses and the distance

Newton developed the following equation to describe quantitatively the mag-

nitude of the gravitational force if distance r separates masses m1 and m2:

G is called the constant of universal gravitation. The value of G was unknown in

Newton’s day, but experiments have since determined the value to be as follows:

G = 6.673 × 10−11 
N

k

•

g

m
2

2



Newton demonstrated that the gravitational force that a spherical mass

exerts on a particle outside the sphere would be the same if the entire mass of

the sphere were concentrated at the sphere’s center. When calculating the

gravitational force between Earth and our sun, for example, you use the dis-

tance between their centers.

Gravitational force acts between all masses

Gravitational force always attracts objects to one another, as shown in Figure 7.

The force that the moon exerts on Earth is equal and opposite to the force that

Earth exerts on the moon. This relationship is an example of Newton’s third law

of motion. Also, note that the gravitational forces shown in Figure 7 are cen-

tripetal forces. As a result of these centripetal forces, the moon and Earth each

orbit around the center of mass of the Earth-moon system. Because Earth has a

much greater mass than the moon, this center of mass lies within Earth.

Gravitational force exists between any two masses, regardless of size. For

instance, desks in a classroom have a mutual

attraction because of gravitational force. The

force between the desks, however, is negligibly

small relative to the force between each desk

and Earth because of the differences in mass.

If gravitational force acts between all masses,

why doesn’t Earth accelerate up toward a falling

apple? In fact, it does! But, Earth’s acceleration is

so tiny that you cannot detect it. Because Earth’s

mass is so large and acceleration is inversely

proportional to mass, the Earth’s acceleration is

negligible. The apple has a much smaller mass

and thus a much greater acceleration.
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NEWTON’S LAW OF UNIVERSAL GRAVITATION

Fg = G 
m

r

1m
2

2


gravitational force = constant ×
mass 1 × mass 2


(distance between masses)2

FmE = Fc

FEm = Fc

Figure 7

The gravitational force attracts
Earth and the moon to each other.
According to Newton’s third law,
FEm = −FmE .

Developed and maintained by the
National Science Teachers Association

For a variety of links related to this

chapter, go to www.scilinks.org

Topic: Gravity and Orbiting

Objects

SciLinks Code: HF60692
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SAMPLE PROBLEM C

Gravitational Force

P R O B L E M

Find the distance between a 0.300 kg billiard ball and a 0.400 kg billiard ball
if the magnitude of the gravitational force between them is 8.92 � 10�11 N.

S O L U T I O N

Given: m1 = 0.300 kg m2 = 0.400 kg Fg = 8.92 × 10−11 N

Unknown: r = ?

Use the equation for Newton’s law of universal gravitation, and solve for r.

Fg = G 
m

r

1m
2

2


r =�G 
m

F

1m

g
�2

�

r =��6.673�× 10−1�1��� ×���
r = 3.00 × 10−1 m

(0.300 kg)(0.400 kg)


8.92 × 10−11 N

N•m2


kg2

Gravitational Force

1. What must be the distance between two 0.800 kg balls if the magnitude

of the gravitational force between them is equal to that in Sample 

Problem C?

2. Mars has a mass of about 6.4 × 1023 kg, and its moon Phobos has a mass

of about 9.6 × 1015 kg. If the magnitude of the gravitational force between

the two bodies is 4.6 × 1015 N, how far apart are Mars and Phobos?

3. Find the magnitude of the gravitational force a 66.5 kg person would

experience while standing on the surface of each of the following planets:

Planet Mass Radius

Earth 5.97 × 1024 kg 6.38 × 106 m

Mars 6.42 × 1023 kg 3.40 × 106 m

Pluto 1.25 × 1022 kg 1.20 × 106 m

a.

b.

c.

PRACTICE C
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A black hole is an object that is

so massive that nothing, not even

light, can escape the pull of its

gravity. In 1916, Karl Schwarzschild

was the first person to suggest the

existence of black holes. He used

his solutions to Einstein’s general-

relativity equations to explain the

properties of black holes. In 1967,

the physicist John Wheeler coined

the term “black hole” to describe

these objects.

In order for an object to escape

the gravitational pull of a planet,

such as Earth, the object must be

moving away from the planet faster

than a certain threshold speed,

which is called the escape velocity.

The escape velocity at the surface

of Earth is about 1.1 × 104 m/s, or

about 25 000 mi/h.

The escape velocity for a black

hole is greater than the speed of

light. And, according to Einstein’s

special theory of relativity, no object

can move at a speed equal to or

greater than the speed of light.

Thus, no object that is

within a certain distance

of a black hole can

move fast enough to

escape the gravitational

pull of the black hole.

That distance, called the

Schwarzschild radius,

defines the edge, or hori-

zon, of a black hole.

How can a black

hole trap light if light has no mass?

According to Einstein’s general

theory of relativity, any object with

mass bends the fabric of space and

time itself.When an object that

has mass or even when a ray of

light passes near another object,

the path of the moving object or

ray curves because space-time itself

is curved. The curvature is so great

inside a black hole that the path of

any light that might be emitted

from the black hole bends back

toward the black hole and remains

trapped inside the horizon.

Because black holes trap light,

they cannot be observed directly.

Instead, astronomers must look

for indirect evidence of black

holes. For example, astronomers

have observed stars orbiting very

rapidly around the centers of some

galaxies. By measuring the speed of

the orbits, astronomers can calcu-

late the mass of the dark object—

the black hole—that must be at

the galaxy’s center. Black holes at

the centers of galaxies typically

have masses millions or billions of

times the mass of the sun.

The figure above shows a disk

of material orbiting a black hole.

Material that orbits a black hole

can move at such high speeds and

have so much energy that the

material emits X rays. From obser-

vations of the X rays coming from

such disks, scientists have discov-

ered several black holes within

our own galaxy.

THE INSIDE STORY
ON BLACK HOLES

This artist’s conception shows a disk
of material orbiting a black hole. Such
disks provide indirect evidence of
black holes within our own galaxy.

This image from NASA’s Chandra
X-ray Observatory is of Sagittarius A*,
which is a supermassive black hole at
the center of our galaxy. Astronomers
are studying the image to learn more
about Sagittarius A* and about black
holes in the centers of other galaxies.



APPLYING THE LAW OF GRAVITATION

For about six hours, water slowly rises along the shoreline of many coastal

areas and culminates in a high tide. The water level then slowly lowers for

about six hours and returns to a low tide. This cycle then repeats. Tides take

place in all bodies of water but are most noticeable along seacoasts. In the Bay

of Fundy, shown in Figure 8, the water rises as much as 16 m from its low

point. Because a high tide happens about every 12 hours, there are usually two

high tides and two low tides each day. Before Newton developed the law of

universal gravitation, no one could explain why tides occur in this pattern.

Newton’s law of gravitation accounts for ocean tides

High and low tides are partly due to the gravitational force exerted on Earth

by its moon. The tides result from the difference between the gravitational

force at Earth’s surface and at Earth’s center. A full explanation is beyond the

scope of this text, but we will briefly examine this relationship.

The two high tides take place at locations on Earth that are nearly in line

with the moon. On the side of Earth that is nearest to the moon, the moon’s

gravitational force is greater than it is at Earth’s center (because gravitational

force decreases with distance). The water is pulled toward the moon, creating

an outward bulge. On the opposite side of Earth, the gravitational force is less

than it is at the center. On this side, all mass is still pulled toward the moon,

but the water is pulled least. This creates another outward bulge. Two high

tides take place each day because when Earth rotates one full time, any given

point on Earth will pass through both bulges.

The moon’s gravitational force is not the only factor that affects ocean

tides. Other influencing factors include the depths of the ocean basins, Earth’s

tilt and rotation, and friction between the ocean water and the ocean floor.

The sun also contributes to Earth’s ocean tides, but the sun’s effect is not as

significant as the moon’s is. Although the sun exerts a much greater gravita-

tional force on Earth than the moon does, the difference between the force on

the far and near sides of Earth is what affects the tides.
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When the sun and moon are in line,

the combined effect produces a

greater-than-usual high tide called a

spring tide. When the sun and moon

are at right angles, the result is a

lower-than-normal high tide called a

neap tide. Each revolution of the

moon around Earth corresponds to

two spring tides and two neap tides.

Did you know?

Figure 8

Some of the world’s highest tides
occur at the Bay of Fundy, which is
between New Brunswick and Nova
Scotia, Canada. These photographs
show a river outlet to the Bay of
Fundy at low and high tide.



Cavendish finds the value of G and Earth’s mass

In 1798, Henry Cavendish conducted an experiment that determined the value

of the constant G. This experiment is illustrated in Figure 9. As shown in Figure

9(a), two small spheres are fixed to the ends of a suspended light rod. These two

small spheres are attracted to two larger spheres by the gravitational force, as

shown in Figure 9(b). The angle of rotation is measured with a light beam and is

then used to determine the gravitational force between the spheres. When the

masses, the distance between them, and the gravitational force are known, New-

ton’s law of universal gravitation can be used to find G. Once the value of G is

known, the law can be used again to find Earth’s mass.

Gravity is a field force

Newton was not able to explain how objects can exert forces on one another

without coming into contact. He developed a mathematical theory to describe

gravity, but he did not have a physical explanation for how gravity works. Sci-

entists later developed a theory of fields to explain how gravity and other field

forces operate. According to this theory, masses create a gravitational field in

space. (Similarly, charged objects generate an electric field.) A gravitational

force is an interaction between a mass and the gravitational field created by

other masses.

When you raise a ball to a certain height above Earth, the ball gains poten-

tial energy. Where is this potential energy stored? The physical properties of

the ball and of Earth have not changed. However, the gravitational field

between the ball and Earth has changed since the ball has changed position

relative to Earth. According to field theory, the gravitational energy is stored in

the gravitational field itself.

At any point, Earth’s gravitational field can be described by the gravita-

tional field strength, abbreviated g. The value of g is equal to the magnitude of

the gravitational force exerted on a unit mass at that point, or g = Fg /m. The

gravitational field (g) is a vector with a magnitude of g that points in the

direction of the gravitational force.
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Figure 9

Henry Cavendish used an experi-
ment similar to this one to deter-
mine the value of G.

Gravitational Field

Strength

M A T E R I A L S  L I S T

• spring scale

• hook (of a known mass)

• various masses

You can attach a mass to a

spring scale to find the gravitational

force that is acting on that mass.

Attach various combinations of

masses to the hook, and record the

force in each case. Use your data to

calculate the gravitational field

strength for each trial (g = Fg /m). Be

sure that your calculations account

for the mass of the hook. Average

your values to find the gravitational

field strength at your location on

Earth’s surface. Do you notice any-

thing about the value you obtained?

(a) (b)

Mirror

Light

source



Gravitational field strength equals free-fall acceleration

Consider an object that is free to accelerate and is acted on only by gravita-

tional force. According to Newton’s second law, a = F/m. As seen earlier, g is

defined as Fg/m, where Fg is gravitational force. Thus, the value of g at any

given point is equal to the acceleration due to gravity. For this reason, g =

9.81 m/s2 on Earth’s surface. Although gravitational field strength and free-fall

acceleration are equivalent, they are not the same thing. For instance, when you

hang an object from a spring scale, you are measuring gravitational field

strength. Because the mass is at rest (in a frame of reference fixed to Earth’s

surface), there is no measurable acceleration.

Figure 10 shows gravitational field vectors at different points around

Earth. As shown in the figure, gravitational field strength rapidly decreases as

the distance from Earth increases, as you would expect from the inverse-

square nature of Newton’s law of universal gravitation.

Weight changes with location

In the chapter about forces, you learned that weight is the magnitude of the

force due to gravity, which equals mass times free-fall acceleration. We can

now refine our definition of weight as mass times gravitational field strength.

The two definitions are mathematically equivalent, but our new definition

helps to explain why your weight changes with your location in the universe.

Newton’s law of universal gravitation shows that the value of g depends on

mass and distance. For example, consider a tennis ball of mass m. The gravita-

tional force between the tennis ball and Earth is as follows:

Fg = 
Gm

r2

mE


Combining this equation with the definition for gravitational field strength

yields the following expression for g :

g = 
F

m

g
 = 

G

m

m

r

m
2

E
 = G 

m

r2
E



This equation shows that gravitational field strength depends only on mass

and distance. Thus, as your distance from Earth’s center increases, the value of

g decreases, so your weight also decreases. On the surface of any planet, the

value of g, as well as your weight, will depend on the planet’s mass and radius.
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Figure 10

The gravitational field vectors rep-
resent Earth’s gravitational field at
each point. Note that the field has
the same strength at equal distances
from Earth’s center.

1. Gravity on the Moon The magnitude of g

on the moon’s surface is about 
6

1
 of the value of g on

Earth’s surface. Can you infer from this relationship

that the moon’s mass is 
6

1
 of Earth’s mass? Why or

why not?

2. Selling Gold A scam artist hopes to

make a profit by buying and selling gold at differ-

ent altitudes for the same price per weight.

Should the scam artist buy or sell at the

higher altitude? Explain.



Gravitational mass equals inertial mass

Because gravitational field strength equals free-fall acceleration, free-fall accel-

eration on the surface of Earth likewise depends only on Earth’s mass and

radius. Free-fall acceleration does not depend on the falling object’s mass,

because m cancels from each side of the equation, as shown on the previous

page.

Although we are assuming that the m in each equation is the same, this

assumption was not always an accepted scientific fact. In Newton’s second law, m

is sometimes called inertial mass because this m refers to the property of an object

to resist acceleration. In Newton’s gravitation equation, m is sometimes called

gravitational mass because this m relates to how objects attract one another.

How do we know that inertial and gravitational mass are equal? The fact

that the acceleration of objects in free fall on Earth’s surface is always the same

confirms that the two types of masses are equal. A more massive object expe-

riences a greater gravitational force, but the object resists acceleration by just

that amount. For this reason, all masses fall with the same acceleration (disre-

garding air resistance).

There is no obvious reason why the two types of masses should be equal.

For instance, the property of electric charges that causes them to be attracted

or repelled was originally called electrical mass. Even though this term has the

word mass in it, electrical mass has no connection to gravitational or inertial

mass. The equality between inertial and gravitational mass has been continu-

ally tested and has thus far always held up.
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ADVANCED TOPICS

The equality of gravitational
and inertial masses puzzled 
scientists for many years. 
Einstein’s general theory of 
relativity was the first explana-
tion of this equality. See “Gen-
eral Relativity” in Appendix J:
Advanced Topics to learn more
about this topic.

SECTION REVIEW

1. Explain how the force due to gravity keeps a satellite in orbit.

2. Is there gravitational force between two students sitting in a classroom? 

If so, explain why you don’t observe any effects of this force.

3. Earth has a mass of 5.97 × 1024 kg and a radius of 6.38 × 106 m, while

Saturn has a mass of 5.68 × 1026 kg and a radius of 6.03 × 107 m. Find

the weight of a 65.0 kg person at the following locations:

a. on the surface of Earth

b. 1000 km above the surface of Earth

c. on the surface of Saturn

d. 1000 km above the surface of Saturn

4. What is the magnitude of g at a height above Earth’s surface where free-

fall acceleration equals 6.5 m/s2?

5. Critical Thinking Suppose the value of G has just been discovered.

Use the value of G and an approximate value for Earth’s radius (6.38 ×

106 m)  to find an approximation for Earth’s mass.



Motion in SpaceSECTION 3

KEPLER’S LAWS

People have studied the motions of the planets since ancient times. Until the

middle of the 16th century, most people believed that Earth was at the center

of the universe. Originally, it was believed that the sun and other planets

orbited Earth in perfect circles. However, this model did not account for all of

the observations of planetary motion.

In the second century CE, Claudius Ptolemy developed an elaborate theory

of planetary motion. Ptolemy’s theory attempted to reconcile observation

with theory and to keep Earth at the center of the universe. In this theory,

planets travel in small circles called epicycles while simultaneously traveling in

larger circular orbits. Even Ptolemy’s complex model did not fully agree with

observation, although the model did explain more than previous theories.

In 1543, the Polish astronomer Nicolaus Copernicus (1473–1543) published

On the Revolutions of the Heavenly Spheres, in which he proposed that Earth and

other planets orbit the sun in perfect circles. Figure 11 shows a sun-centered plan-

etary model that is believed to have been made for King George III of England.

The idea of a sun-centered universe was not completely new in the 16th century. A

Greek named Aristarchus theorized 1700 years before Copernicus did that Earth

revolved around the sun, but most other scientists did not accept his theory.

Kepler’s three laws describe the motion of the planets

The astronomer Tycho Brahe (1546–1601) made many pre-

cise observations of the planets and stars. However, some of

Brahe’s data did not agree with the Copernican model. The

astronomer Johannes Kepler (1571–1630) worked for many

years to reconcile Copernican theory with Brahe’s data.

Kepler’s analysis led to three laws of planetary motion,

which were developed a generation before Newton’s law of

universal gravitation. Kepler’s three laws can be summarized

as shown on the next page.
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SECTION OBJECTIVES

� Describe Kepler’s laws of
planetary motion.

� Relate Newton’s mathemati-
cal analysis of gravitational
force to the elliptical plan-
etary orbits proposed by
Kepler.

� Solve problems involving
orbital speed and period.

Figure 11

This elaborate planetary model—called an orrery—
shows the motions of Mercury,Venus, and Earth
around the sun. The model also shows the moon’s
inclined orbit around Earth.



Kepler’s first law states that the planets’ orbits are ellipses rather than cir-

cles. Kepler discovered this law while working with Brahe’s data for the orbit

of Mars. While trying to explain the data, Kepler experimented with 70 differ-

ent circular orbits and generated numerous pages of calculations. He finally

realized that if the orbit is an ellipse rather than a circle and the sun is at one

focal point of the ellipse, the data fit perfectly.

Kepler’s second law states that an imaginary line from

the sun to any planet sweeps out equal areas in equal times,

as shown in Figure 12. In other words, if the time a planet

takes to travel the arc on the left (∆t1) is equal to the time

the planet takes to cover the arc on the right (∆t2), then the

area A1 is equal to the area A2. Thus, the planets travel

faster when they are closer to the sun.

While Kepler’s first two laws describe the motion of each planet individually,

his third law relates the orbital periods and distances of one planet to those of

another planet. The orbital period (T) is the time a planet takes to finish one full

revolution, and the distance (r) is the mean distance between the planet and the

sun. Kepler’s third law relates the orbital period and mean distance for two

orbiting planets as follows:

= , or T2
∝ r3

This law also applies to satellites orbiting Earth, including our moon. In that

case, r is the distance between the orbiting satellite and Earth. The propor-

tionality constant depends on the mass of the central object.

Kepler’s laws are consistent with Newton’s law of gravitation

Newton used Kepler’s laws to support his law of gravitation. For example,

Newton proved that if force is inversely proportional to distance squared, as

stated in the law of universal gravitation, the resulting orbit must be an ellipse

or a circle. He also demonstrated that his law of gravitation could be used to

derive Kepler’s third law. (Try a similar derivation yourself in the Quick Lab at

right.) The fact that Kepler’s laws closely matched observations gave additional

support for Newton’s theory of gravitation.

r1
3


r2

3

T1
2


T2

2

KEPLER’S LAWS OF PLANETARY MOTION

First Law: Each planet travels in an elliptical orbit around the sun, and the

sun is at one of the focal points.

Second Law: An imaginary line drawn from the sun to any planet sweeps

out equal areas in equal time intervals.

Third Law: The square of a planet’s orbital period (T 2) is proportional 

to the cube of the average distance (r3) between the planet and the 

sun, or T 2
∝ r3.
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Figure 12

This diagram illustrates a planet
moving in an elliptical orbit around
the sun. If ∆t1 equals ∆t2, then the
two shaded areas are equal. Thus,
the planet travels faster when it is
closer to the sun and slower when
it is farther away.

Kepler’s Third Law

You can mathematically show

how Kepler’s third law can be

derived from Newton’s law of uni-

versal gravitation (assuming circular

orbits). To begin, recall that the cen-

tripetal force is provided by the

gravitational force. Set the equations

for gravitational and centripetal

force equal to one another, and

solve for vt
2. Because speed equals

distance divided by time and

because the distance for one period

is the circumference (2pr), vt =

2pr/T. Square this value, substitute

the squared value into your previ-

ous equation, and then isolate T2.

How does your result relate to

Kepler’s third law?

A1

∆t1

∆t2
A2

Sun



Kepler’s third law describes orbital period

According to Kepler’s third law, T2
∝ r3. The constant of proportionality

between these two variables turns out to be 4p
2/Gm, where m is the mass of

the object being orbited. (To learn why this is the case, try the Quick Lab on

the previous page.) Thus, Kepler’s third law can also be stated as follows:

T 2 = � �r3

The square root of the above equation, which is shown below on the left,

describes the period of any object that is in a circular orbit. The speed of an

object that is in a circular orbit depends on the same factors that the period

does, as shown in the equation on the right. The assumption of a circular orbit

provides a close approximation for real orbits in our solar system because all

planets except Mercury and Pluto have orbits that are nearly circular.

Note that m in both equations is the mass of the central object that is being

orbited. The mass of the planet or satellite that is in orbit does not affect its

speed or period. The mean radius (r) is the distance between the centers of the

two bodies. For an artificial satellite orbiting Earth, r is equal to Earth’s mean

radius plus the satellite’s distance from Earth’s surface (its “altitude”). Table 1

gives planetary data that can be used to calculate orbital speeds and periods.

PERIOD AND SPEED OF AN OBJECT IN CIRCULAR ORBIT

T = 2p�
G

r

m

3

� vt = �G 
m

r
�

4p
2


Gm
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orbital period = 2p ����

orbital speed = �(const�ant)�����mass of central object


mean radius

(mean radius)3


(constant)(mass of central object)

Table 1 Planetary Data

Planet Mass Mean Mean distance

(kg) radius (m) from sun (m)

Earth 5.97 × 1024 6.38 × 106
1.50 × 1011

Earth’s

moon 7.35 × 1022
1.74 × 106 ——

Jupiter 1.90 × 1027 7.15 × 107 7.79 × 1011

Mars 6.42 × 1023 3.40 × 106 2.28 × 1011

Mercury 3.30 × 1023 2.44 × 106 5.79 × 1010

Planet Mass Mean Mean distance

(kg) radius (m) from sun (m)

Neptune 1.02 × 1026 2.48 × 107 4.50 × 1012

Pluto 1.25 × 1022
1.20 × 106 5.87 × 1012

Saturn 5.68 × 1026 6.03 × 107
1.43 × 1012

Sun 1.99 × 1030 6.96 × 108 ——

Uranus 8.68 × 1025 2.56 × 107 2.87 × 1012

Venus 4.87 × 1024 6.05 × 106
1.08 × 1011

We generally speak of the moon

orbiting Earth, but they are actually

both in orbit around the center of

mass of the Earth-moon system.

Because Earth is so much more

massive than the moon, their com-

mon center of mass lies inside

Earth. Thus, the moon appears to

orbit Earth. The center of mass does

not always lie inside one of the bod-

ies. For example, Pluto and its moon,

Charon, orbit a center of mass that

lies between them. Also, many bina-

ry star systems have two stars that

orbit a common center of mass

between the stars.

Did you know?
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SAMPLE PROBLEM D

Period and Speed of an Orbiting Object

P R O B L E M

The color-enhanced image of Venus shown here was com-
piled from data taken by Magellan, the first planetary
spacecraft to be launched from a space shuttle. During the
spacecraft’s fifth orbit around Venus, Magellan traveled at
a mean altitude of 361 km. If the orbit had been circular,
what would Magellan’s period and speed have been?

S O L U T I O N

Given: r1 = 361 km = 3.61 × 105 m

Unknown: T = ? vt = ?

Choose an equation or situation: Use the equations for the period and 

speed of an object in a circular orbit.

T = 2p�
G

r

m

3

� vt = �G 
m

r
�

Use Table 1 to find the values for the radius (r2) and mass (m) of Venus.

r2 = 6.05 × 106 m m = 4.87 × 1024 kg

Find r by adding the distance between the spacecraft and Venus’s surface (r1) to

Venus’s radius (r2).

r = r1 + r2 = (3.61 × 105 m) + (6.05 × 106 m) = 6.41 × 106 m

Substitute the values into the equations and solve:

T = 2p��� =

vt = ��6.673� × 10−1�1

N

k

•

g

m
2�

2

��46.8.47�1

×

×

1

1

0

0

2

6�
4

m

kg
�� =

Magellan takes (5.66 × 103 s)(1 min/60 s) ≈ 94 min to complete one orbit.

7.12 × 103 m/s

5.66 × 103 s
(6.41 × 106 m)3



�6.673 × 10−11

N

k

•

g

m
2

2

�(4.87 × 1024 kg)

1. DEFINE

2. PLAN

3. CALCULATE

4. EVALUATE

PRACTICE D

Period and Speed of an Orbiting Object

1. Find the orbital speed and period that the Magellan satellite from Sample

Problem D would have at the same mean altitude above Earth, Jupiter,

and Earth’s moon.

2. At what distance above Earth would a satellite have a period of 125 min?



WEIGHT AND WEIGHTLESSNESS

In the chapter about forces, you learned that weight is the magnitude of the

force due to gravity. When you step on a bathroom scale, it does not actually

measure your weight. The scale measures the downward force exerted on it.

When your weight is the only downward force acting on the scale, the scale

reading equals your weight. If a friend pushes down on you while you are

standing on the scale, the scale reading will go up. However, your weight has

not changed; the scale reading equals your weight plus the extra applied

force. Because of Newton’s third law, the downward force you exert on the

scale equals the upward force exerted on you by the scale (the normal force).

Thus, the scale reading is equal to the normal force acting on you.

For example, imagine you are standing in an elevator, as illustrated in 

Figure 13. When the elevator is at rest, as in Figure 13(a), the magnitude of

the normal force is equal to your weight. A scale in the elevator would

record your weight. When the elevator begins accelerating downward, as in

Figure 13(b), the normal force will be smaller. The scale would now record

an amount that is less than your weight. If the elevator’s acceleration were

equal to free-fall acceleration, as shown in Figure 13(c), you would be

falling at the same rate as the elevator and would not feel the force of the

floor at all. In this case, the scale would read zero. You still have the same

weight, but you and the elevator are both falling with free-fall acceleration.

In other words, no normal force is acting on you. This situation is called

apparent weightlessness.
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Elevator Acceleration

M A T E R I A L S  L I S T

• elevator

• bathroom scale

• watch or stopwatch

In this activity, you will stand on a

bathroom scale while riding an eleva-

tor up to the top floor and then

back. Stand on the scale in a first-

floor elevator, and record your

weight. As the elevator moves up,

record the scale reading for every

two-second interval. Repeat the

process as the elevator moves down.

Now, find the net force for each

time interval, and then use New-

ton’s second law to calculate the

elevator’s acceleration for each

interval. How does the acceleration

change? How does the elevator’s

maximum acceleration compare

with free-fall acceleration?

a = 0

a = g

a

Fn

Fg

Fn
Fn

Fg

Fg

600 N

0 N

300 N

= 0

(a) (b) (c)

Figure 13

When this elevator accelerates, the normal force acting on the person changes.
If the elevator were in free fall, the normal force would drop to zero and the
person would experience a sensation of apparent weightlessness.



Astronauts in orbit experience apparent weightlessness

Astronauts floating in a space shuttle are experiencing apparent weightless-

ness. Because the shuttle is accelerating at the same rate as the astronauts

are, this example is similar to the elevator in Figure 13(c). The force due to

gravity keeps the astronauts and shuttle in orbit, but the astronauts feel

weightless because no normal force is acting on them.

The human body relies on gravitational force. For example, this force

pulls blood downward so that the blood collects in the veins of your legs

when you are standing. Because the body of an astronaut in orbit accelerates

along with the space shuttle, gravitational force has no effect on the body.

This state can initially cause nausea and dizziness. Over time, it can pose

serious health risks, such as weakened muscles and brittle bones. When

astronauts return to Earth, their bodies need time to readjust to the effects

of the gravitational force.

So far, we have been describing apparent weightlessness. Actual weightless-

ness occurs only in deep space, far from stars and planets. Gravitational force

is never entirely absent, but it can become negligible at distances that are far

enough away from any masses. In this case, a star or astronaut would not be

pulled into an orbit but would instead drift in a straight line at constant speed.
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SECTION REVIEW

1. Compare Ptolemy’s model of the solar system with Copernicus’s. How

does Kepler’s first law of planetary motion refine Copernicus’s model?

2. Does a planet in orbit around the sun travel at a constant speed? How do

you know?

3. Suppose you know the mean distance between both Mercury and the sun

and Venus and the sun. You also know the period of Venus’s orbit around

the sun. How can you find the period of Mercury’s orbit?

4. Explain how Kepler’s laws of planetary motion relate to Newton’s law of

universal gravitation.

5. Find the orbital speed and period of Earth’s moon. The average distance

between the centers of Earth and of the moon is 3.84 × 108 m.

6. Critical Thinking An amusement park ride raises people high into

the air, suspends them for a moment, and then drops them at the rate of

free-fall acceleration. Is a person in this ride experiencing apparent

weightlessness, true weightlessness, or neither? Explain.

7. Critical Thinking Suppose you went on the ride described in item 6,

held a penny in front of you, and released the penny at the moment the

ride started to drop. What would you observe?

Integrating Health
Visit go.hrw.com for the activity

“Exercise in Space.”

Keyword HF6CMGX



Torque and Simple MachinesSECTION 4

ROTATIONAL MOTION

Earlier in this chapter, you studied various examples of uniform circular

motion, such as a spinning Ferris wheel or an orbiting satellite. During uni-

form circular motion, an object moves in a circular path and at constant speed.

An object that is in circular motion is accelerating because the direction of the

object’s velocity is constantly changing. This centripetal acceleration is directed

toward the center of the circle. The net force causing the acceleration is a cen-

tripetal force, which is also directed toward the center of the circle.

In this section, we will examine a related type of motion: the motion of a

rotating rigid object. For example, consider a football that is spinning as it

flies through the air. If gravity is the only force acting on the football, the foot-

ball spins around a point called its center of mass. As the football moves

through the air, its center of mass follows a parabolic path. Note that the cen-

ter of mass is not always at the center of the object.

Rotational and translational motion can be separated

Imagine that you roll a strike while bowling. When the bowling ball strikes the

pins, as shown in Figure 14, the pins spin in the air as they fly backward. Thus,

they have both rotational and linear motion. These types of motion can be

analyzed separately. In this section, we will isolate rotational motion. In partic-

ular, we will explore how to measure the ability of a force to rotate an object.
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ADVANCED TOPICS

See “Rotation and Inertia” and
“Rotational Dynamics” in 
Appendix J: Advanced Topics
to learn more about rotational
motion.

SECTION OBJECTIVES

� Distinguish between torque
and force.

� Calculate the magnitude of 
a torque on an object.

� Identify the six types of 
simple machines.

� Calculate the mechanical
advantage of a simple
machine.

Figure 14

Pins that are spinning and flying
through the air exhibit both rota-
tional and translational motion.



THE MAGNITUDE OF A TORQUE

Imagine a cat trying to leave a house by pushing perpendicularly on a cat-flap

door. Figure 15 shows a cat-flap door hinged at the top. In this configuration,

the door is free to rotate around a line that passes through the hinge. This is

the door’s axis of rotation. When the cat pushes at the outer edge of the door

with a force that is perpendicular to the door, the door opens. The abil-

ity of a force to rotate an object around some axis is measured by a quantity

called 

Torque depends on the force and the lever arm

If a cat pushed on the door with the same force but at a point closer to the hinge,

the door would be more difficult to rotate. How easily an object rotates depends

not only on how much force is applied but also on where the force is applied.

The farther the force is from the axis of rotation, the easier it is to rotate the

object and the more torque is produced. The perpendicular distance from the

axis of rotation to a line drawn along the direction of the force is called the

Figure 16 shows a diagram of the

force F applied by the pet perpendicu-

lar to the cat-flap door. If you exam-

ine the definition of lever arm, you

will see that in this case the lever arm

is the distance d shown in the figure,

the distance from the pet’s nose to the

hinge. That is, d is the perpendicular

distance from the axis of rotation to

the line along which the applied force

acts. If the pet pressed on the door at a

higher point, the lever arm would be

shorter. As a result, the cat would need

to exert a greater force to apply the

same torque.

lever arm.

torque.
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Figure 15

The cat-flap door rotates on a hinge, allow-
ing pets to enter and leave a house at will.

axis of
rotation

d

F

Figure 16

A force applied to an extended
object can produce a torque. This
torque, in turn, causes the object to
rotate.

torque

a quantity that measures the

ability of a force to rotate an

object around some axis

lever arm

the perpendicular distance from

the axis of rotation to a line drawn

along the direction of the force

Changing the Lever Arm

M A T E R I A L S  L I S T

• door

• masking tape

In this activity, you will explore how the

amount of force required to open a door

changes when the lever arm changes. Using

only perpendicular forces, open a door

several times by applying a force at differ-

ent distances from the hinge. You may have

to tape the latch so that the door will open

when you push without turning the knob.

Because the angle of the applied force is

kept constant, decreasing the distance to

the hinge decreases the lever arm. Com-

pare the relative effort required to open

the door when pushing near the edge to

that required when pushing near the

hinged side of the door. Summarize your

findings in terms of torque and the lever

arm.



F d

θ

The lever arm depends on the angle

Forces do not have to be perpendicular to an object to cause the object to

rotate. Imagine the cat-flap door again. In Figure 17(a), the force exerted by

the cat is perpendicular. When the angle is less than 90°, as in (b) and (c), the

door will still rotate, but not as easily. The symbol for torque is the Greek letter

tau (t), and the magnitude of the torque is given by the following equation:

The SI unit of torque is the N•m. Notice that the inclusion of the factor sin q

in this equation takes into account the changes in torque shown in Figure 17.

Figure 18 shows a wrench pivoted around a bolt. In this case, the applied

force acts at an angle to the wrench. The quantity d is the distance from the

axis of rotation to the point where force is applied. The quantity d sin q , how-

ever, is the perpendicular distance from the axis of rotation to a line drawn

along the direction of the force. Thus, d sin q is the lever arm. Note that the

perpendicular distance between the door hinge and the point of application

of force F in Figure 17 decreases as the cat goes further through the door.

THE SIGN OF A TORQUE

Torque, like displacement and force, is a vector quantity. In this textbook, we

will assign each torque a positive or negative sign, depending on the direction

the force tends to rotate an object. We will use the convention that the sign of

the torque resulting from a force is positive if the rotation is counterclockwise

and negative if the rotation is clockwise. In calculations, remember to assign

positive and negative values to forces and displacements according to the sign

convention established in the chapter “Motion in One Dimension.”

To determine the sign of a torque, imagine that the torque is the only one
acting on the object and that the object is free to rotate. Visualize the direc-
tion that the object would rotate. If more than one force is acting, treat each
force separately. Be careful to associate the correct sign with each torque.

TORQUE

t = Fd sin q

torque = force × lever arm
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F d

θ

d
F

θ

Figure 17

In each example, the cat is pushing
on the door at the same distance
from the axis. To produce the same
torque, the cat must apply greater
force for smaller angles.

θ

F

d

d sin q

θ

Figure 18

The direction of the lever arm is
always perpendicular to the direc-
tion of the applied force.

PHYSICSPHYSICS

Module 9
“Torque”
provides an interactive lesson
with guided problem-solving
practice to teach you about
many aspects of rotational
motion, including torque.

(a) (b) (c)



For example, imagine that you are pulling on a wishbone with a perpendic-

ular force F1 and that a friend is pulling in the opposite direction with a force

F2. If you pull the wishbone so that it would rotate counterclockwise, then

you exert a positive torque of magnitude F1d1. Your friend, on the other hand,

exerts a negative torque, –F2d2. To find the net torque acting on the wishbone,

simply add up the individual torques.

tnet = Σt = t1 + t2 = F1d1 + (−F2d2)

When you properly apply the sign convention, the sign of the net torque

will tell you which way the object will rotate, if at all.
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Developed and maintained by the
National Science Teachers Association

For a variety of links related to this

chapter, go to www.scilinks.org

Topic: Torque

SciLinks Code: HF61538

SAMPLE PROBLEM E

Torque

P R O B L E M

A basketball is being pushed by two players during tip-off. One player
exerts an upward force of 15 N at a perpendicular distance of 14 cm from
the axis of rotation. The second player applies a downward force of 11 N at
a perpendicular distance of 7.0 cm from the axis of rotation. Find the net
torque acting on the ball about its center of mass.

S O L U T I O N

Given: F1 = 15 N F2 = 11 N

d1 = 0.14 m d2 = 0.070 m

Unknown: tnet = ?

Diagram:

Choose an equation or situation: Apply the definition
of torque to each force, and add up the individual torques.

t = Fd

tnet = t1 + t2 = F1d1 + F2d2

The factor sin q is not included because each given distance is the perpendicular
distance from the axis of rotation to a line drawn along the direction of the force.

Substitute the values into the equations and solve: First, determine the

torque produced by each force. Use the standard convention for signs.

t1 = F1d1 = (15 N)(−0.14 m) = −2.1 N•m

t2 = F2d2 = (−11 N)(0.070 m) = −0.77 N•m

tnet = −2.1 N•m − 0.77 N•m

The net torque is negative, so the ball rotates in a clockwise direction.

tnet = −2.9 N•m

1. DEFINE

2. PLAN

3. CALCULATE

4. EVALUATE

d1 = 0.14 m

d2 = 0.070 m

F2 = 11 N

F1 = 15 N



TYPES OF SIMPLE MACHINES

What do you do when you need to pry a cap off a bottle of soda? You probably

use a bottle opener, as shown in Figure 19. Similarly, you would probably use

scissors to cut paper or a hammer to drive a nail into a board. All of these

devices make your task easier. These devices are all examples of machines.

The term machine may bring to mind intricate systems with multicolored

wires and complex gear-and-pulley systems. Compared with internal-

combustion engines or airplanes, simple devices such as hammers, scissors,

and bottle openers may not seem like machines, but they are.

A machine is any device that transmits or modifies force, usually by chang-

ing the force applied to an object. All machines are combinations or modifica-

tions of six fundamental types of machines, called simple machines. These six

simple machines are the lever, pulley, inclined plane, wheel and axle, wedge,

and screw, as shown in Table 2 on the next page.

Using simple machines

Because the purpose of a simple machine is to change the direction or magni-

tude of an input force, a useful way of characterizing a simple machine is to

compare how large the output force is relative to the input force. This ratio,

called the machine’s mechanical advantage, is written as follows:

MA = 
o

i

u

n

t

p

p

u

u

t

t

f

f

o

o

r

r

c

c

e

e
 = 

F

F

o

i

u

n

t
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PRACTICE E

Torque

1. Find the magnitude of the torque produced by a 3.0 N force applied to a

door at a perpendicular distance of 0.25 m from the hinge.

2. A simple pendulum consists of a 3.0 kg point mass hanging at the end of

a 2.0 m long light string that is connected to a pivot point.

a. Calculate the magnitude of the torque (due to gravitational force)

around this pivot point when the string makes a 5.0° angle with

the vertical.

b. Repeat this calculation for an angle of 15.0°.

3. If the torque required to loosen a nut on the wheel of a car has a magni-

tude of 40.0 N•m, what minimum force must be exerted by a mechanic at

the end of a 30.0 cm wrench to loosen the nut?

Figure 19

Because this bottle opener makes
work easier, it is an example of a
machine.



One example of mechanical advantage is the use of the back of a hammer to

pry a nail from a board. In this example, the hammer is a type of lever. A person

applies an input force to one end of the handle. The handle, in turn, exerts an

output force on the head of a nail stuck in a board. If friction is disregarded, the

input torque will equal the output torque. This relation can be written as follows:

tin = tout

Findin = Foutdout

Substituting this expression into the definition of mechanical advantage gives

the following result:

MA = 
F

F

o

i

u

n

t
 = 

d

d

o

i

u

n

t



The longer the input lever arm as compared with the output lever arm, the

greater the mechanical advantage is. This in turn indicates the factor by which

the input force is amplified. If the force of the board on the nail is 99 N and if

the mechanical advantage is 10, then an input force of 10 N is enough to pull

out the nail. Without a machine, the nail could not be removed unless the

input force was greater than 99 N.
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Table 2 Six Simple Machines

Lever

Fulcrum

Inclined plane
Wheel

Axle

Screw

Pulleys

Wedge

This equation can be used to pre-
dict the output force for a given
input force if there is no friction.
The equation is not valid if fric-
tion is taken into account. With
friction, the output force will be
less than expected, and thus


d

d

o

i

u

n

t

 will not equal 
F

F

o

i

u

n

t
.



Machines can alter the force and the distance moved

You have learned that mechanical energy is conserved in the absence of fric-

tion. This law holds for machines as well. A machine can increase (or decrease)

the force acting on an object at the expense (or gain) of the distance moved,

but the product of the two—the work done on the object—is constant.

For example, Figure 20 shows two examples of a trunk being loaded onto a

truck. Figure 21 illustrates both examples schematically. In one example, the

trunk is lifted directly onto the truck. In the other example, the trunk is

pushed up an incline into the truck.

In the first example, a force (F1) of 360 N is required to lift the trunk,

which moves through a distance (d1) of 1.0 m. This requires 360 N•m of

work (360 N × 1 m). In the second example, a lesser force (F2) of only 120 N

would be needed (ignoring friction), but the trunk must be pushed a greater

distance (d2) of 3.0 m. This also requires 360 N•m of work (120 N × 3 m). As

a result, the two methods require the same amount of energy.

Efficiency is a measure of how well a machine works

The simple machines we have considered so far are ideal, frictionless machines.

Real machines, however, are not frictionless. They dissipate energy. When the

parts of a machine move and contact other objects, some of the input energy is

dissipated as sound or heat. The efficiency of a machine is the ratio of useful

work output to work input. It is defined by the following equation:

eff = 
W

W

o

i

u

n

t


If a machine is frictionless, then mechanical energy is conserved. This means

that the work done on the machine (input work) is equal to the work done by

the machine (output work) because work is a measure of energy transfer.

Thus, the mechanical efficiency of an ideal machine is 1, or 100 percent. This

is the best efficiency a machine can have. Because all real machines have at

least a little friction, the efficiency of real machines is always less than 1.
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Figure 20

Lifting this trunk directly up
requires more force than pushing it
up the ramp, but the same amount
of work is done in both cases.

Figure 21

Simple machines can alter both the
force needed to perform a task and
the distance through which the
force acts.

Small distance—Large force

Large distance—Small force

F1

d1

F2
d2
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SECTION REVIEW

1. Determine whether each of the following situations involves linear

motion, rotational motion, or a combination of the two.

a. a baseball dropped from the roof of a house

b. a baseball rolling toward third base

c. a pinwheel in the wind

d. a door swinging open

2. What quantity describes the ability of a force to rotate an object? How

does it differ from a force? On what quantities does it depend?

3. How would the force needed to open a door change if you put the han-

dle in the middle of the door?

4. What are three ways that a cat pushing on a cat-flap door can change

the amount of torque applied to the door?

5. The efficiency of a squeaky pulley system is 73 percent. The pulleys are

used to raise a mass to a certain height. What force is exerted on the

machine if a rope is pulled 18.0 m in order to raise a 58 kg mass a

height of 3.0 m?

6. A person lifts a 950 N box by pushing it up an incline. If the person

exerts a force of 350 N along the incline, what is the mechanical advan-

tage of the incline?

7. You are attempting to move a large rock by using a

long lever. Will the work you do on the lever be

greater than, the same as, or less than the work done

by the lever on the rock? Explain.

8. Interpreting Graphics Calculate the torque

for each force acting on the bar in Figure 22.

Assume the axis is perpendicular to the page and

passes through point O. In what direction will the

object rotate?

9. Interpreting Graphics Figure 23

shows an example of a Rube Goldberg

machine. Identify two types of simple

machines that are included in this com-

pound machine.

10. Critical Thinking A bicycle can be

described as a combination of simple

machines. Identify two types of simple

machines that are used to propel a typical

bicycle.

45°

30.0 N 4.0 m

2.0 m

O 23°

31°
25.0 N

10.0 N

Figure 22

Figure 23



HighlightsCHAPTER 7

KEY IDEAS

Section 1   Circular Motion

• An object that revolves about a single axis undergoes circular motion.

• An object in circular motion has a centripetal acceleration and a centripetal

force, which are both directed toward the center of the circular path.

Section 2   Newton’s Law of Universal Gravitation

• Every particle in the universe is attracted to every other particle by a force

that is directly proportional to the product of the particles’ masses and

inversely proportional to the square of the distance between the particles.

• Gravitational field strength is the gravitational force that would be exerted on

a unit mass at any given point in space and is equal to free-fall acceleration.

Section 3   Motion in Space

• Kepler developed three laws of planetary motion.

• Both the period and speed of an object that is in a circular orbit around

another object depend on two quantities: the mass of the central object

and the distance between the centers of the objects.

Section 4   Torque and Simple Machines

• Torque is a measure of a force’s ability to rotate an object.

• The torque on an object depends on the magnitude of the applied force

and on the lever arm.

• Simple machines provide a mechanical advantage.

KEY TERMS

centripetal acceleration

(p. 235)

gravitational force (p. 240)

torque (p. 255)

lever arm (p. 255)
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PROBLEM SOLVING

See Appendix D: Equations for 
a summary of the equations
introduced in this chapter. If
you need more problem-solving
practice, see Appendix I: 
Additional Problems.

Variable Symbols

Quantities Units

vt tangential speed m/s meters/second

ac centripetal acceleration m/s2 meters/second2

Fc centripetal force N newtons

Fg gravitational force N newtons

g gravitational field strength N/kg newtons/kilogram

T orbital period s seconds

t torque N•m newton meter



CIRCULAR MOTION

Review Questions

1. When a solid wheel rotates about a fixed axis, do all

of the points of the wheel have the same tangential

speed?

2. Correct the following statement: The racing car

rounds the turn at a constant velocity of 145 km/h.

3. Describe the path of a moving body whose accel-

eration is constant in magnitude at all times and is

perpendicular to the velocity.

4. Give an example of a situation in which an automo-

bile driver can have a centripetal acceleration but no

tangential acceleration.

Conceptual Questions

5. The force exerted by a spring increases as the spring

stretches. Imagine that you attach a heavy object to

one end of a spring and then, while holding the

spring’s other end, whirl the spring and object in a

horizontal circle. Does the spring stretch? Explain.

6. Can a car move around a circular racetrack so that

the car has a tangential acceleration but no cen-

tripetal acceleration?

7. Why does mud fly off a rapidly turning wheel?

Practice Problems

For problems 8–9, see Sample Problem A.

8. A building superintendent twirls a set of keys in a cir-

cle at the end of a cord. If the keys have a centripetal

acceleration of 145 m/s2 and the cord has a length of

0.34 m, what is the tangential speed of the keys?

9. A sock stuck to the side of a clothes-dryer barrel has

a centripetal acceleration of 28 m/s2. If the dryer

barrel has a radius of 27 cm, what is the tangential

speed of the sock?

ReviewCHAPTER 7

For problems 10–11, see Sample Problem B.

10. A roller-coaster car speeds down a hill past point A

and then rolls up a hill past point B, as shown below.

a. The car has a speed of 20.0 m/s at point A. If

the track exerts a normal force on the car of 2.06

× 104 N at this point, what is the mass of the car?

(Be sure to account for gravitational force.)

b. What is the maximum speed the car can have

at point B for the gravitational force to hold it

on the track?

11. Tarzan tries to cross a river by swinging from one

bank to the other on a vine that is 10.0 m long. His

speed at the bottom of the swing is 8.0 m/s. Tarzan

does not know that the vine has a breaking strength

of 1.0 × 103 N. What is the largest mass that Tarzan

can have and still make it safely across the river?

NEWTON’S LAW OF UNIVERSAL
GRAVITATION

Review Questions

12. Identify the influence of mass and distance on 

gravitational forces.

13. If a satellite orbiting Earth is in free fall, why does

the satellite not fall and crash into Earth?

14. How does the gravitational force exerted by Earth

on the sun compare with the gravitational force

exerted by the sun on Earth?

15. What simple observation confirms that gravita-

tional mass and inertial mass are equal?

10.0 m

15.0 m

A

B
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Conceptual Questions

16. Would you expect tides to be higher at the equator

or at the North Pole? Why?

17. Given Earth’s radius, how could you use the value of

G to calculate Earth’s mass?

Practice Problems

For problems 18–19, see Sample Problem C.

18. The gravitational force of attraction between two

students sitting at their desks in physics class is 

3.20 × 10−8 N. If one student has a mass of 50.0 kg

and the other has a mass of 60.0 kg, how far apart

are the students sitting?

19. If the gravitational force between the electron (9.11 ×

10−31 kg) and the proton (1.67 × 10−27 kg) in a

hydrogen atom is 1.0 × 10−47 N, how far apart are the

two particles?

MOTION IN SPACE

Review Questions

20. Compare and contrast Kepler’s model of the solar

system with Copernicus’s model.

21. How do Kepler’s laws help support Newton’s theory

of gravitation?

22. You are standing on a scale in an elevator. For a brief

time, the elevator descends with free-fall accelera-

tion. What does the scale show your weight to be

during that time interval?

23. Astronauts floating around inside the space shuttle

are not actually in a zero-gravity environment.

What is the real reason astronauts seem weightless?

Conceptual Questions

24. A tiny alien spaceship (m = 0.25 kg) and the

International Space Station are both orbiting Earth

in circular orbits and at the same distance from

Earth. Which one has a greater orbital speed?

25. The planet shown below sweeps out Area 1 in half

the time that the planet sweeps out Area 2. How

much bigger is Area 2 than Area 1?

26. Comment on the statement, “There is no gravity in

outer space.”

Practice Problems

For problems 27–29, see Sample Problem D.

27. What would be the orbital speed and period of a

satellite in orbit 1.44 × 108 m above Earth?

28. A satellite with an orbital period of exactly 24.0 h is

always positioned over the same spot on Earth. This

is known as a geosynchronous orbit. Television, com-

munication, and weather satellites use geosynchro-

nous orbits. At what distance would a satellite have

to orbit Earth in order to have a geosynchronous

orbit?

29. The distance between the centers of a small moon

and a planet in our solar system is 2.0 × 108 m. If

the moon’s orbital period is 5.0 × 104 s, what is the

planet? (See Table 1 of the chapter for planet masses.)

TORQUE AND SIMPLE MACHINES

Review Questions

30. Why is it easier to loosen the lid from the top of a

paint can with a long-handled screwdriver than

with a short-handled screwdriver?

31. If a machine cannot multiply the amount of work,

what is the advantage of using such a machine?

32. In the equation for the magnitude of a torque, what

does the quantity d sin q represent?

Area 1
Area 2

Sun
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Conceptual Questions

33. Which of the forces acting on the rod shown below

will produce a torque about the axis at the left end

of the rod?

34. Two forces equal in magnitude but opposite in

direction act at the same point on an object. Is it

possible for there to be a net torque on the object?

Explain.

35. You are attempting to move a large rock by using a

long lever. Is it more effective to place the lever’s axis

of rotation nearer to your hands or nearer to the

rock? Explain.

36. A perpetual motion machine is a machine that,

when set in motion, will never come to a halt. Why

is such a machine not possible?

Practice Problems

For problems 37–38, see Sample Problem E.

37. A bucket filled with water has a mass of 54 kg and is

hanging from a rope that is wound around a 0.050 m

radius stationary cylinder. If the cylinder does not

rotate and the bucket hangs straight down, what is

the magnitude of the torque the bucket produces

around the center of the cylinder?

38. A mechanic jacks up the front of a car to an angle of

8.0° with the horizontal in order to change the front

tires. The car is 3.05 m long and has a mass of 1130

kg. Gravitational force acts at the center of mass,

which is located 1.12 m from the front end. The rear

wheels are 0.40 m from the back end. Calculate the

magnitude of the torque exerted by the jack.

MIXED REVIEW

39. A 2.00 × 103 kg car rounds a circular turn of radius

20.0 m. If the road is flat and the coefficient of stat-

ic friction between the tires and the road is 0.70,

how fast can the car go without skidding?

axis of rotation

F1

F2

40. During a solar eclipse, the moon, Earth, and sun lie

on the same line, with the moon between Earth and

the sun. What force is exerted on

a. the moon by the sun?

b. the moon by Earth?

c. Earth by the sun?

(See the table in Appendix F for data on the sun,

moon, and Earth.)

41. A wooden bucket filled with water has a mass of

75 kg and is attached to a rope that is wound

around a cylinder with a radius of 0.075 m. A crank

with a turning radius of 0.25 m is attached to the

end of the cylinder. What minimum force directed

perpendicularly to the crank handle is required to

raise the bucket?

42. If the torque required to loosen a nut that holds a

wheel on a car has a magnitude of 58 N•m, what

force must be exerted at the end of a 0.35 m lug

wrench to loosen the nut when the angle is 56°?

(Hint: See Figure 18 for an example, and assume

that q is 56˚.)

43. In a canyon between two mountains, a spherical

boulder with a radius of 1.4 m is just set in motion

by a force of 1600 N. The force is applied at an angle

of 53.5° measured with respect to the vertical radius

of the boulder. What is the magnitude of the torque

on the boulder?

44. The hands of the clock in the famous Parliament

Clock Tower in London are 2.7 m and 4.5 m long

and have masses of 60.0 kg and 100.0 kg, respective-

ly. Calculate the torque around the center of the

clock due to the weight of these hands at 5:20. The

weight of each hand acts at the center of mass (the

midpoint of the hand).

45. The efficiency of a pulley system is 64 percent. The

pulleys are used to raise a mass of 78 kg to a height

of 4.0 m. What force is exerted on the rope of the

pulley system if the rope is pulled for 24 m in order

to raise the mass to the required height?

46. A crate is pulled 2.0 m at constant velocity along a

15° incline. The coefficient of kinetic friction

between the crate and the plane is 0.160. Calculate

the efficiency of this procedure.
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47. A pulley system is used to lift a piano 3.0 m. If a

force of 2200 N is applied to the rope as the rope is

pulled in 14 m, what is the efficiency of the

machine? Assume the mass of the piano is 750 kg.

48. A pulley system has an efficiency of 87.5 percent.

How much of the rope must be pulled in if a force

of 648 N is needed to lift a 150 kg desk 2.46 m?

(Disregard friction.) 

49. Jupiter’s four large moons—Io, Europa, Ganymede,

and Callisto—were discovered by Galileo in 1610.

Jupiter also has dozens of smaller moons. Jupiter’s

rocky, volcanically-active moon Io is about the size

of Earth’s moon. Io has radius of about 1.82 ×

106 m, and the mean distance between Io and Jupiter

is 4.22 × 108 m.

a. If Io’s orbit were circular, how many days

would it take for Io to complete one full revo-

lution around Jupiter?

b. If Io’s orbit were circular, what would its

orbital speed be?
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wrench to loosen a “frozen” bolt is a common illus-

tration of this equation.

In this graphing calculator activity, you will

determine how torque relates to the angle of the

applied force and to the distance of application.

Visit go.hrw.com and type in the keyword

HF6CMGX to find this graphing calculator activity.

Refer to Appendix B for instructions on download-

ing the program for this activity.

Torque

One of the terms introduced in this chapter is

torque. Torque is a measure of the ability of a force

to rotate an object around an axis. As you learned

earlier in this chapter, torque is described by the fol-

lowing equation:

t = Fdsin q

In this equation, F is the applied force, d is the dis-

tance from the axis of rotation, and q is the angle at

which the force is applied. A mechanic using a long
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50. A 13 500 N car traveling at 50.0 km/h rounds a

curve of radius 2.00 × 102 m. Find the following:

a. the centripetal acceleration of the car

b. the centripetal force 

c. the minimum coefficient of static friction

between the tires and the road that will allow

the car to round the curve safely

51. The arm of a crane at a construction site is 15.0 m

long, and it makes an angle of 20.0° with the hori-

zontal. Assume that the maximum load the crane

can handle is limited by the amount of torque the

load produces around the base of the arm.

a. What is the magnitude of the maximum torque

the crane can withstand if the maximum load

the crane can handle is 450 N?

b. What is the maximum load for this crane at

an angle of 40.0° with the horizontal?

52. At the sun’s surface, the gravitational force between

the sun and a 5.00 kg mass of hot gas has a magni-

tude of 1370 N. Assuming that the sun is spherical,

what is the sun’s mean radius?

53. An automobile with a tangential speed of 55.0 km/h

follows a circular road that has a radius of 40.0 m.

The automobile has a mass of 1350 kg. The pave-

ment is wet and oily, so the coefficient of kinetic

friction between the car’s tires and the pavement is

only 0.500. How large is the available frictional

force? Is this frictional force large enough to main-

tain the automobile’s circular motion?

54. A force is applied to a door at an angle of 60.0° and

0.35 m from the hinge. What force produces a

torque with a magnitude of 2.0 N•m? How large is

the maximum torque this force can exert?

55. Imagine a balance with unequal arms. An earring

placed in the left basket was balanced by 5.00 g of

standard masses on the right. When placed in the

right basket, the same earring required 15.00 g on

the left to balance. Which was the longer arm? Do

you need to know the exact length of each arm to

determine the mass of the earring? Explain.

1. Research the historical development of the concept

of gravitational force. Find out how scientists’ ideas

about gravity have changed over time. Identify the

contributions of different scientists, such as Galileo,

Kepler, Newton, and Einstein. How did each scien-

tist’s work build on the work of earlier scientists?

Analyze, review, and critique the different scientific

explanations of gravity. Focus on each scientist’s

hypotheses and theories. What are their strengths?

What are their weaknesses? What do scientists think

about gravity now? Use scientific evidence and

other information to support your answers. Write a

report or prepare an oral presentation to share your

conclusions.

2. Describe exactly which measurements you would

need to make in order to identify the torques at

work during a ride on a specific bicycle. Your plans

should include measurements you can make with

equipment available to you. If others in the class

analyzed different bicycle models, compare the

models for efficiency and mechanical advantage.

3. Prepare a poster or a series of models of simple

machines, explaining their use and how they work.

Include a schematic diagram next to each sample or

picture to identify the fulcrum, lever arm, and resis-

tance. Add your own examples to the following list:

nail clipper, wheelbarrow, can opener, nutcracker,

electric drill, screwdriver, tweezers, and key in lock.

Alternative Assessment



MULTIPLE CHOICE

1. An object moves in a circle at a constant speed.

Which of the following is not true of the object?

A. Its centripetal acceleration points toward the

center of the circle.

B. Its tangential speed is constant.

C. Its velocity is constant.

D. A centripetal force acts on the object.

Use the passage below to answer questions 2–3.

A car traveling at 15 m/s on a flat surface turns in a cir-

cle with a radius of 25 m.

2. What is the centripetal acceleration of the car?

F. 2.4 × 10−2 m/s2

G. 0.60 m/s2

H. 9.0 m/s2

J. zero

3. What is the most direct cause of the car’s cen-

tripetal acceleration?

A. the torque on the steering wheel

B. the torque on the tires of the car

C. the force of friction between the tires and the

road

D. the normal force between the tires and the

road

4. Earth (m = 5.97 × 1024 kg) orbits the sun (m = 1.99 ×

1030 kg) at a mean distance of 1.50 × 1011 m. What

is the gravitational force of the sun on Earth? (G =

6.673 × 10−11 N•m2/kg2)

F. 5.29 × 1032 N

G. 3.52 × 1022 N

H. 5.90 × 10−2 N

J. 1.77 × 10−8 N

5. Which of the following is a correct interpretation

of the expression ag = g = G ⎯
m

r2
E

⎯?

A. Gravitational field strength changes with an

object’s distance from Earth.

B. Free-fall acceleration changes with an object’s

distance from Earth.

C. Free-fall acceleration is independent of the

falling object’s mass.

D. All of the above are correct interpretations.

6. What data do you need to calculate the orbital

speed of a satellite?

F. mass of satellite, mass of planet, radius of orbit

G. mass of satellite, radius of planet, area of orbit

H. mass of satellite and radius of orbit only

J. mass of planet and radius of orbit only

7. Which of the following choices correctly describes

the orbital relationship between Earth and the sun?

A. The sun orbits Earth in a perfect circle.

B. Earth orbits the sun in a perfect circle.

C. The sun orbits Earth in an ellipse, with Earth

at one focus.

D. Earth orbits the sun in an ellipse, with the sun

at one focus.

Use the diagram below to answer questions 8–9.

8. The three forces acting on the wheel above have

equal magnitudes. Which force will produce the

greatest torque on the wheel?

F. F1

G. F2

H. F3

J. Each force will produce the same torque.

F1
F2

F3
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9. If each force is 6.0 N, the angle between F1 and F2

is 60.0°, and the radius of the wheel is 1.0 m, what

is the resultant torque on the wheel?

A. −18 N•m

B. −9.0 N•m

C. 9.0 N•m

D. 18 N•m

10. A force of 75 N is applied to a lever. This force lifts

a load weighing 225 N. What is the mechanical

advantage of the lever?

F. 
1

3


G. 3

H. 150

J. 300

11. A pulley system has an efficiency of 87.5 percent.

How much work must you do to lift a desk weigh-

ing 1320 N to a height of 1.50 m?

A. 1510 J

B. 1730 J

C. 1980 J

D. 2260 J

12. Which of the following statements is correct?

F. Mass and weight both vary with location.

G. Mass varies with location, but weight does not.

H. Weight varies with location, but mass does

not.

J. Neither mass nor weight varies with location.

13. Which astronomer discovered that planets travel

in elliptical rather than circular orbits?

A. Johannes Kepler

B. Nicolaus Copernicus

C. Tycho Brahe

D. Claudius Ptolemy

SHORT RESPONSE

14. Explain how it is possible for all the water to

remain in a pail that is whirled in a vertical path,

as shown below.

15. Explain why approximately two high tides take

place every day at a given location on Earth.

16. If you used a machine to increase the output force,

what factor would have to be sacrificed? Give an

example.

EXTENDED RESPONSE

17. Mars orbits the sun (m = 1.99 × 1030 kg) at a mean

distance of 2.28 × 1011 m. Calculate the length of

the Martian year in Earth days. Show all of your

work. (G = 6.673 × 10−11 N•m2/kg2)
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If you are solving a quantitative
problem, start by writing down the relevant equation(s).
Solve the equation(s) to find the variable you need for
the answer, and then substitute the given data.
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In this lab, you will design an experiment to study the efficiency of two types

of simple machines: inclined planes and pulleys. In your experiment, you

should use each type of machine to use a smaller mass to lift a larger mass.

With each setup, you should collect data that will allow you to calculate the

work input and the work output of the system. The ratio of the useful work

output to the work input is called the efficiency of a machine. By calculating

efficiency, you will be able to compare the two types of machines.

PROCEDURE

1. Study the materials provided, and design an experiment to meet the

goals stated above.

OBJECTIVES

•Measure the work input
and work output of sev-
eral machines.

•Calculate the efficiency
of each machine.

•Compare machines
based on their efficien-
cies, and determine what
factors affect efficiency.

MATERIALS LIST

• balance

• C-clamp

• cord

• dynamics cart

• inclined plane

• mass hanger

• meterstick

• pulleys, single and tandem

• set of hooked masses

• right-angle clamp

• support stand

• suspension clamp

Inquiry Lab
CHAPTER 7

Design Your Own

Machines and Efficiency

SAFETY

• Tie back long hair, secure loose clothing, and remove loose jewelry to

prevent their getting caught in moving parts and pulleys. Put on goggles.

• Attach string to masses and objects securely. Falling or dropped mass-

es can cause serious injury.

Figure 1

• Choose any angle, but make sure
the top of the plane is at least 20 cm
above the table.

• Make sure the string is long
enough to help prevent the cart from
falling off the top of the plane. Attach
the mass hanger securely to the end
of the string.
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2. Write out your lab procedure, including a detailed description of the

measurements to take during each step and the number of trials to per-

form. You may use Figure 1 as a guide to one possible setup.

3. Ask your teacher to approve your procedure.

4. Follow all steps of your procedure.

5. Clean up your work area. Put equipment away safely so that it is ready to

be used again.

ANALYSIS

1. Organizing Data For each trial, make the following calculations:

a. the weight of the mass being raised

b. the weight of the mass on the string

c. the work input and the work output

2. Analyzing Results In which trial did a machine perform the most

work? In which trial did a machine perform the least work?

3. Organizing Data Calculate the efficiency for each trial.

4. Analyzing Results Is the machine that performed the most work also the

most efficient? Is the machine that performed the least work also the least

efficient? What is the relationship between work and efficiency?

CONCLUSIONS

5. Drawing Conclusions Based on your calculations in item 4, which is

more efficient, a pulley system or an inclined plane?

6. Evaluating Methods Why is it important to calculate the work input

and the work output from measurements made when the object is mov-

ing with constant velocity?

EXTENSIONS

7. Designing Experiments Design an experiment to measure the effi-

ciency of different lever setups. If there is time and your teacher

approves, test your lever setups in the lab. How does the efficiency of a

lever compare with the efficiency of the other types of machines you

have studied?

8. Building Models Compare the trial with the highest efficiency and the

trial with the lowest efficiency. Based on their differences, design a more

efficient machine than any you built in the lab. If there is time and your

teacher approves, test the machine to test whether it is more efficient.

Circular Motion and Gravitation
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